INNOVATIVE WASTEWATER TREATMENT PROCESS FOR EASTERN COASTAL AREA

Dr.-Ing. Marius Mohr

Regional Workshop on Integrated Resource Management in Asian Cities: The Urban Nexus

Da Nang, Vietnam, 25 June 2014

Fraunhofer

- The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society
- Fraunhofer is the largest organization for applied research in Europe
- International collaboration through representative offices in Europe, the US, Asia and the Middle East

Outline

- 1. Situation in Da Nang, Eastern Coastal Area
- 2. Proposed solution for Eastern Coastal Area
- 3. Spotlights from other Nexus cities

Eastern Coastal Area (ECA)

- Son Tra Peninsula, population: 200,000 (Da Nang: 1 Mio.)
- Beautiful coastline, tourist hotels and resorts
- Most houses have septic tanks (infiltrate into ground)
- Some are connected to drainage system, some not (connection rate Da Nang: about 16%)
- Wastewater from septic tanks is overflowing into stormwater drainage system
- During heavy rain: overflow to the beaches
- Urban agriculture on unused plots
- Population is expected to increase strongly (urbanization)

Source: Google Maps

Drivers for wastewater concept

- Clean beaches and water
- Water scarcity during dry season, seawater intrusion
- Flooding from heavy rains, increasing sea level, river
- Increasing energy demand
- Image as an eco-friendly city

Increasing water demand

Water consumption and per capita income in selected Asian cities

- Da Nang, GDP 2009:
 1500 US\$ per person;
 water consumption 2013:
 130 I/cap/d
- Da Nang, GDP 2009: annual growth rate 12 %

Source: The United Nations World Water Development Report 2014

Framework conditions for wastewater concept

- Separate sewer system (wastewater and rainwater collected in separate systems)
 - No fecal bacteria in overflow nor in flood water
 - Wastewater treatment works during rainy season as well
- Economically feasible
- Limited space available (e.g. no pond system)
- Wastewater reuse and utilization of nutrients as fertilizer
- Utilization of energy potential (biogas production)

Content of wastewater

- Organic matter: used by microorganisms as substrate, can be transformed into biogas by anaerobic processes
- Nutrients (mainly nitrogen and phosphorous): can be used as fertilizer, in natural water bodies they lead to eutrophication (e.g. algae growth)
- Microorganisms: Mainly from human feces, some are pathogenic, can lead to diseases (e.g. in drinking water, agricultural products, bathing water)
- Water: can be reused if treated correctly

Wastewater reuse in agriculture: Milan San Rocco, Italy

- In operation since 2004
- Treating wastewater of 1 Mio. population equivalents
- Disinfection of water by sand filtration and UV
- Water used for irrigation of rice, corn, grass and horticulture
- Investment cost: 180 US\$/ population equivalent
- Operation and maintenance cost: 0.156 US\$/m³, energy cost: 42 % of O&M-cost
- Reduction of energy costs through anaerobic digestion and utilization of nutrients with recycled water possible

Wastewater treatment concept Da Nang, ECA

Approach for Da Nang, Eastern Coastal Area

- First step: pilot vacuum sewer system for 110 households
- Wastewater treatment in this small scale not economical
- Next step: connection of more households to vacuum sewer system
- Combine with wastewater treatment plant
- Example designed for 30,000 inhabitants (4,000 m³/d)
- Gain experience as foundation for design of WWTPs for rest of peninsula

Design of WWTP for 30,000 population equivalents (p.e.)

Two operation modes

- Mode 1: Dry season, demand for irrigation water and nutrients (N and P). Nutrients are not eliminated in treatment process.
- ⇒ Less consumption of chemicals for precipitation, organic load can be transformed into biogas. Nutrients are used as fertilizer.

- Mode 2: Rainy season, no demand for irrigation, treated wastewater is discharged into Han River. According to Vietnamese legislation, nutrient concentrations have to be reduced.
- Phosphorous precipitation and denitrification of nitrate becomes necessary. Denitrification process needs organic load, less biogas produced.

Costs and benefits for WWTP for 30,000 p.e.

- Investment: 7 13 Mio. US\$ (230-430 US\$/cap) -depending on site conditions
- Area demand: ca. 6,000 m²
- Operation: ca. 500,000 US\$/a (0.345 US\$/m³)
- Biogas production from wastewater: ca. 1,200 m³/d (mode 1), 850 m³/d (mode 2)
- Income if sold as bottled gas (can be used instead of LPG): 30,000 US\$/month (mode 1) or 20,500 US\$/month (mode 2)

Costs and benefits for WWTP for 30,000 p.e.

- Energy demand for cooking in Hyatt Regency Da Nang Resort nearly covered by produced biogas
- If rainy season lasts 4 months: income of 320,000 US\$/a from biogas
- Operation costs reduced to 180,000 US\$/a (0.126 US\$/m³)
- Irrigation and fertilization of 100-200 ha possible, NPK-fertilizer worth 30,000 US\$/a substituted

Kitchen waste

- Kitchen waste from hotels and resorts (3,000 kg/day) added to anaerobic digester
- If bio-waste from households is added to wastewater treatment, revenues through biogas increase strongly
- With higher amount of biogas (5 to 10 times more), utilization as fuel (e.g. for buses) becomes viable option for large scale treatment plants
- Large hotels and resorts: check if individual decentralized wastewater treatment is more economic (option for reusing water on own grounds and using biogas themselves)

Strategic considerations

- Wastewater treatment capacity can be build up step by step to prevent high financial burdens
- As a large, densely populated town, Da Nang needs modern wastewater disposal with low space requirements for its further development
- To start with basic low-cost technology and later replace it by modern technology will be more expensive in the end
- Water scarcity is an issue during dry season- wastewater is available around the year
- 30% of demand on fruit and vegetables is met by urban agriculture in Da Nang- if groundwater is over-exploited, salt water intrudes

Increasing water demand

- With growing GDP, water demand increases
- Critical: a) secure water supply, b) treat wastewater (costs, capacity)
- Authorities can influence water demand:
 - Cost: step tariff first 100 l/cap/d cheap, then increase price considerably
 - Awareness raising campaigns, teach in kindergartens and schools
 - Reducing water losses in supply network

Korat – biogas from bio-waste

- 400 t/d municipal solid waste of Korat and 28 other municipalities collected and brought to a landfill (in operation since 1999, sealed since 2008)
- April 2012: waste sorting plant and biogas plant start operation (built and operated by private company)
- Until now no regular operation of biogas plant possible- problems: sorting process and mixing of digesters
- Biogas used in Combined Heat and Power Plant (electricity and heat)
- Heat cannot be used on site, more than 50% of energy is wasted if producing electricity - utilization of gas as fuel for trucks to be considered
- German student currently analyzing process in Korat in frame of Nexus project (supervision by GIZ and Fraunhofer IGB)
- Incineration plant is envisaged to reduce amount of waste for landfill

Korat biogas plant

Korat – wastewater collection and treatment

- Around 90 % of population connected to combined sewer system
- Most houses have septic tanks solids retained, water overflows to sewer system
- Pond system for wastewater treatment since 1990's (3 x 3 ponds)
- Since 2009, Activated Sludge (AS) process for effluent of ponds (3 plants)
- Effluent used for irrigation in urban agriculture off the record
- Wastewater reaching pond system is very "thin" due to degradation in septic tanks (methane emission)
- Further degradation in ponds, not much left for AS-plants
- Recommendation: treat wastewater directly in AS-plant and use area of ponds for alternative purposes.
- Last pond in each line: maturation pond, utilization of treated wastewater for irrigation (and fertilization) officially and regulated!

Korat – wastewater treatment

Ulan Bator- heat in wastewater has large potential

- Mean temperature of -2 °C: "coldest capital in the world"
- High demand on energy for heating of buildings: centralized district heating system exists
- Centralized WWTP: wastewater has high temperatures in relation to air temperature in cold season (originating from use of warm water in flats and from industrial wastewater)
- Utilization of heat in treated wastewater: potential of around 500,000 MWh per year- 17,000 (not insulated) to 40,000 (insulated) flats (60 m²) can be heated throughout the year
- Use of heat in wastewater also possible in sewer close to users (decentralized solution), e.g. to pre-heat water for warm water generation – heat exchanger in sewer, pump, heat exchanger in cold water line

Ulan Bator central WWTP

Naga City- pilot wastewater plant

- No wastewater treatment facilities exist yet, septic tanks under houses
- Treatment of wastewater from a low-cost residential area, a prison, a slaughterhouse and a school in one plant (around 210 m³/d)
- Treated water can be discharged into creek
- Biogas generation for processes in slaughterhouse
- If successfully piloted, treatment process can be applied for other parts of Naga step by step
- Objective 1: improve water quality in Naga River and Bicol River, flowing through the center of the city, and thus improve quality of living
- Objective 2: Increase share of renewable energy used

Thank you for your attention!

Wastewater treatment process Del Rosario, Naga

